
Prep
rin

t

Integrating Secure Coding Principles into Undergraduate

Programming Modules

Full Paper

SACLA 2019

© The authors/SACLA

Sandile Ngwenya 1[0000-0002-6766-224X] and Lynn Futcher 2[0000-0003-0406-8718]

1, 2 Nelson Mandela University, Port Elizabeth, South Africa

{s215161033, lynn.futcher}@mandela.ac.za

Abstract. The rise of the use of the internet has led to significant growth in soft-

ware applications for conducting business, entertainment and socialising, which

in turn has led to a higher rate of attacks on software applications. This problem

has led to the Information Technology industry requiring that software develop-

ers be skilled in developing software in a secure manner. The challenge that in-

dustry faces is that many software development graduates requiring employment

do not have the requisite knowledge regarding secure programming. The need is

therefore for academia to address the needs of industry by integrating secure cod-

ing principles into undergraduate programming modules. This paper highlights

some secure coding principles that could be integrated into such modules. In ad-

dition, it discusses the challenges of, and various approaches to, integrating these

principles into programming modules. Finally, it presents a framework for inte-

grating secure coding principles into undergraduate programming modules to as-

sist university departments in integrating these principles into their undergradu-

ate programming modules.

Keywords: Secure Software Applications, Secure Coding Principles, Under-

graduate Programming Modules, Secure Programming.

1 Introduction

Secure coding, also known as secure programming, is the practice of developing soft-

ware programs that are safe from attacks [1]. This definition immediately introduces us

to the practical aspect of the application of security to software. Over the past decade,

the software development industry’s focus has grown to include security. This change

in focus signifies the need for software developers who can develop secure software

applications. This need has resulted in a demand for continuing secure coding education

as was stated over a decade ago [2] and has been further compounded due to the in-

crease in the number of application vulnerabilities prevalent in software applications

today.

Prep
rin

t

2

[3] assert that many undergraduate programming classes teach some elements of se-

cure coding, such as good program structure, basic input validation, checking bounds

for array references and checking that pointers are non-null. However, many program-

ming classes tend to focus more on the skills required for developing functional and

user-friendly applications than on the security aspects. Without a conscious learning

effort from both programming lecturers and students towards secure coding, software

applications developed by many programming graduates will remain prone to vulnera-

bilities and susceptible to attacks.

Furthermore, [4] state that teaching secure coding has never been more important,

suggesting that the need for the formal inclusion of secure coding principles into un-

dergraduate programming modules must be effected. These secure coding principles

should be assessed both theoretically and practically.

In order to address the problem of the lack of formal inclusion of secure coding

principles into many undergraduate programming modules, this paper firstly highlights

the need for teaching secure coding principles in undergraduate computing curricula as

determined by various ACM curricula reports. Secondly, it presents some secure coding

principles to be considered when teaching secure coding. Furthermore, it reports on the

various challenges and approaches to integrating secure coding principles into program-

ming curricula. Finally, it proposes a three-phased approach to integrate secure coding

principles into undergraduate programming modules in the form of a framework.

2 Secure Coding in Computing Curricula

The Association for Computing Machinery (ACM) is the largest computing society in

the world [5]. As part of its education initiative, the ACM produces and updates curric-

ular recommendations in computer science, computer engineering, information sys-

tems, information technology, and software engineering that are trusted resources uti-

lised by computing programs the world over [6]. The ACM periodically publishes cur-

ricular reports for the computing programs that it provides recommendations for [7, 8,

9].

As the field of IT continues to change and grow rapidly, IT curricula must follow

suit. Inculcating modern skills into the IT curriculum prepares students for professional

practice upon graduation [7]. Furthermore, [7] states that it is vital to include profes-

sional preparedness into IT curricula because graduates of IT programs will be faced

with real-world problems within their workplaces. The report [7] delineates the tech-

nical IT Domains that constitute the education an IT undergraduate must learn. The

Cyber Principles Domain is considered essential by the report [7].

In addition, [7] specifically includes “A focus on implementation, operation, analy-

sis, and testing of the security of computing technologies” as part of its scope. As part

of the Integrated Systems Technology Domain it requires undergraduate programming

students to be able to “Illustrate the goals of secure coding and show how to use these

goals as guideposts in dealing with preventing buffer overflow, wrapper code, and se-

curing method access”. This report therefore confirms that secure coding education

must be part of undergraduate programming modules.

Prep
rin

t

3

Similarly, [8] describes its Information Assurance and Security Knowledge Area

where it specifies the need for security education in undergraduate Computer Science

curricula. The report states that “Information assurance and security as a domain is the

set of controls and processes both technical and policy intended to protect and defend

information and information systems by ensuring their confidentiality, integrity, and

availability, and by providing for authentication and non-repudiation” [8]. The men-

tion of the technical aspect of security suggests that the practical aspects of security

such as secure coding are relevant in undergraduate programming modules. Security

education therefore includes all efforts to prepare graduates with the needed knowledge,

skills, and abilities to develop information systems and attest to the security of pro-

cesses and data [8].

[9] is in agreement and states that developers must ensure that their software is de-

signed to meet security requirements [9], therefore further emphasising the need to ed-

ucate undergraduate programming students in secure coding so as to meet the security

requirements of industry.

The support for the inclusion of security in undergraduate programming modules by

various ACM curricula reports [7, 8, 9] serves to show that attention to secure coding

is mandatory for the education of computing students. This should ensure they have the

ability to develop software applications that can perform the vital function of consist-

ently securing critical data and information.

3 Secure Coding Principles

Secure coding refers to a software product’s robustness against accidental or malicious

unexpected behaviour causing a problem [10]. Coding responsibly means knowing how

to develop secure code which is essential for the implementation of modern software

systems [11]. It is therefore important that undergraduate students learn how to code

responsibly by being taught the theoretical and practical aspects of various secure cod-

ing principles.

The implementation of secure coding principles is key in the development of soft-

ware applications that adhere to security requirements. The list of secure coding prin-

ciples defined below provides an example of secure coding principles that can be taught

in undergraduate programming modules as identified by OWASP [12]. [9] also refer-

ences the same principles within its Software Security Knowledge Area. It is important

to note that the list is not all encompassing, but contains some fundamental secure cod-

ing principles that can be formally included in undergraduate programming modules.

 Input Validation refers to the process of ensuring that data that is entered as input

in applications is filtered and without ‘unclean’ data [13].

 Authentication and Password Management is defined by [14] as the process of a

server deciding whether a user should be allowed to login or not. Authentication

controls must be validated on a trusted system (e.g. a server).

 Session Management tracks the activity of a user as they interact with a website

across sessions. Its most widespread use is the login functionality, but it is also used

to track other types of interactions users may have with a website [15].

Prep
rin

t

4

 Access Control ensures that restricted areas of a software system are only accessed

by authorised users. A user would have to provide credentials to be granted access

[16].

 Cryptographic Practices involve the conversion of data into a format that is un-

readable to users that are not authorised to do so [17].

 Error Handling and Logging entails the recovery of an application from an error

condition using recovery responses. Error handling anticipates the possibility of er-

ror conditions, detects errors, and provides a resolution of an error to maintain the

execution of an application [18].

 Data Protection aims to keep private data only available for business purposes or

to maintain data privacy rights [19].

 Database Security. Information stored in today’s databases is highly valuable and

confidential. As such, secure coding must play an active role in the protection of that

information from unauthorised access to it [20].

 File Management. Files typically store information within them. File types include

text files, data files, binary and graphic files [21]. File upload controls should support

anti-malware and anti-virus capabilities to avoid the upload of files that can compro-

mise the application or database where they would get to be saved [22].

Table 1 depicts the above-mentioned secure coding principles and the related content

that can be taught within programming modules.

Table 1. Secure Coding Principles and Related Content [12].

Secure Coding

Principle

Related Secure Coding Content

Input Validation
 Input validation should be processed on a trusted system

(e.g. a server)

 Input that fails validation should be rejected.

 Expected data types must be validated.

 The data range of input must be validated.

Authentication

and Password

Management

 All authentication should be processed on a trusted sys-

tem (e.g. a server)

 Passwords stored on a database must be encrypted.

 Password complexity must be enforced.

 Minimum password length must be validated.

Session Manage-

ment

 Logout functionality should be protected by authorisation

across all pages where it is used in a website.

 A session must be configured to expire within a reasona-

bly short amount of time

 Session identifiers must not be exposed such as on URL

headers.

Access Control
 Access controls should fail securely

 Only authorised users must be granted access to services.

Prep
rin

t

5

Cryptographic

Practices

 All cryptographic functions used should be processed on

a trusted system (e.g. a server)

 Highly sensitive data must be encrypted

Error Handling

and Logging

 Do not disclose sensitive information in error responses,

including system details, session identifiers or account in-

formation.

 Feedback must be in the form of generic error messages

and custom error pages must be used.

Data Protection
 Feedback must be in the form of generic error messages

and custom error pages must be used.

 URL headers must not include sensitive information.

Database Security
 Parameterised queries must be used for the interaction be-

tween the application and a database.

 Connection strings should be stored and encrypted sepa-

rately in a configuration file on a trusted system. They

must not be hard coded.

File Management
 Files should never be uploaded without requiring authen-

tication.
 Only allow the uploading of file types that are required

for business purposes.

Programming lecturers can use the related content in Table 1 as a basis for determining

the learning outcomes that can be taught for each secure coding principle. This content

should be aligned with the relevant undergraduate programming modules as seen fit by

the educators of such computing courses.

4 Challenges and Approaches to Integrating Secure Coding

Principles into Undergraduate Programming Modules

There are several challenges that affect undergraduate programming modules in inte-

grating learning outcomes that are specifically aimed at teaching secure coding princi-

ples. Although there might be a genuine desire and interest in teaching secure coding,

the reality is that it is not an easy task to accomplish. [10] mention three challenges that

hinder progress when it comes to implementing the teaching of secure coding, includ-

ing:

 The lack of room in the software development curricula;

 The focus of introductory software development courses; and

 Teaching in a manner that does not promote the application of learnt programming

techniques.

The first challenge is due to the notion that software development classes that include

secure coding principles must be separate classes. This is an assumption as introductory

coding classes already teach some of the basics of secure coding such as validating

Prep
rin

t

6

inputs and the handling of exceptions [4]. There are various ways of adding secure

coding principles to undergraduate programming modules. The common approach

would be to add lectures and practical classes that include the teaching of secure coding

[23].

The second challenge stems from the primary focus of introductory undergraduate

programming modules which is to teach programming logic. For many university fac-

ulties, the challenge is knowing where to infuse the secure coding principles within the

sequence of the primary focus. Undergraduate programming classes mainly focus on

algorithmic and programming language issues rather than that of secure coding. This

focus therefore tends to be mostly on good program structure and logic. The norm is

that undergraduate students do not need to know the secure coding concepts in detail

[10]. This leads to students not being taught secure coding principles.

The third challenge speaks to the practical application of what students learn when

they are taught how to code and how their work is graded. It is assumed that students

can be introduced to basic secure coding techniques and that they apply the principles

of secure coding. Students tend to focus on what they are being proactively taught and

assessed on. The result is that students do not apply the principles of secure coding, as

most often the grading also focuses on good program structure and whether their pro-

grams work. This leaves students with the implicit belief that security is not as im-

portant as functionality [10].

These challenges can be overcome if there is an extensive effort by faculty staff to

integrate secure coding principles into undergraduate programming modules. An im-

portant factor in the drive to include comprehensive secure coding principles is to create

a security mindset amongst faculty members as well as students. Many experts consider

this approach to be one of the most important strategies in making progress towards

improving the implementation of secure coding education in undergraduate program-

ming courses [4].

This research acknowledges the need for a structured or logical method of integrat-

ing secure coding principles into undergraduate programming modules. [24] defines an

approach for integrating a pervasive theme into undergraduate IT curricula. The perva-

sive theme approach provides a structured method for assisting in achieving this. Per-

vasive themes are defined as topics that are addressed multiple times from different

perspectives [24]. This means that the teaching of similar content within undergraduate

programming modules can exist between modules. Teaching in this manner is neces-

sary for a topic such as secure coding because students need to learn secure coding as

part of all programming modules holistically and repetitively. The suggestion is that of

considering the use of pervasive themes across undergraduate programming modules.

 A further approach to be considered is the pillars-first approach which provides stu-

dents with the core understanding of foundational software development concepts be-

fore integrating pervasive themes into the curriculum. The main disadvantage of the

pillars-first approach is that it tends to present each core concept in an isolated manner

[24]. This challenge can be addressed by a joint effort by faculty staff by lecturing in a

manner that enables students to understand how the various core concepts are inter-

linked.

Prep
rin

t

7

This research proposes the use of the pillars-first approach as it allows introductory

concepts to be understood by students first before integrating various secure coding

concepts across the several modules taught within an institution’s undergraduate pro-

gramming curriculum. This approach also enables lecturers to gradually integrate se-

cure coding into the curriculum without diminishing the focus of the core programming

concepts [24]. The content for teaching students can then be taught by the lecturer at a

rate they consider feasible for the given module. The importance of repeatedly address-

ing secure coding across several programming modules in computing curricula ensures

that students understand that secure coding is an integral part of software development

and not just a subset of it.

5 A Phased Approach for Integrating Secure Coding Principles

into Undergraduate Programming Modules

The following sub-sections outline three phases that specify how secure coding princi-

ples can be integrated into undergraduate programming modules. The phases are: the

Identification Phase, the Buy-In Phase and the Implementation Phase as discussed in

the following sub-sections.

5.1 The Identification Phase

The Identification Phase as shown in Fig. 1 is the first phase and it is initiated by the

requirements of industry that need academia to teach undergraduate programming stu-

dents secure coding. These requirements may change over time so it would be essential

for universities to keep up to date with these changes. Similarly, the standards and best

practices relating to secure coding and related vulnerabilities may also change.

Fig. 1. The Identification Phase.

Prep
rin

t

8

It is therefore necessary that universities take cognisance of this when identifying

which secure coding principles to integrate into their programming modules. Currently,

the secure coding principles as defined by [7, 8, 9, 12] are deemed to be reputable.

Furthermore, universities should refer to the corresponding ACM curricular reports de-

pending on what qualifications the university offers (for example, Computer Science,

Information Technology, Information Systems). Fig. 1 depicts the Identification Phase

encompassing these key elements, resulting in the identification of relevant secure cod-

ing principles.

5.2 The Buy-In Phase

The Buy-In phase is the second phase and it requires staff in university computing fac-

ulties to take the initiative in choosing the secure coding principles to be used as part

of the learning outcomes of undergraduate programming modules. The initiative would

need to be both a top down approach and also a collaborative one as it requires the

cooperation and buy-in of departmental leadership and the lecturers.

Fig. 2. Direct Control in a Typical University Faculty [25].

The initiative to integrate secure coding principles into the various programming mod-

ules must be supported and initiated by computing faculty leadership within each uni-

versity. The buy-in of leadership is crucial for the successful integration of secure cod-

ing principles into undergraduate programming modules. [25] states that in the univer-

sity context, the Director of School would typically be at the strategic level, with the

Head of Department as part of the leadership at a tactical level and lecturers at the

operational level as shown in Fig. 2.

Furthermore, faculty staff need a mechanism for determining which secure coding

principles should be integrated into which programming modules and at the appropriate

year of study. The understanding of pervasive themes would guide a faculty by the

understanding that each secure coding principle can be taught repeatedly across differ-

ent course levels but with a different focus at each level. Table 2 shows an example of

how a university department can create a checklist for formally integrating secure cod-

ing principles into undergraduate programming modules in each year of study.

Prep
rin

t

9

Table 2. Checklist for Integrating Secure Coding Principles into Various Years of Study.

Secure Coding Principle 1st Year

Modules

2nd Year

Modules

3rd Year

Modules

Input Validation
Authentication and Password Management

Session Management

Access Control
Cryptographic Practices
Error Handling and Logging
Data Protection
Database Security
File Management

A secure coding checklist forms part of this phase due to the need for a formal structure

for determining learning outcomes for each level of study within undergraduate pro-

gramming modules. Each department would need to customise such a checklist accord-

ing to prior knowledge of their students as well as the structure of their specific curric-

ulum. To use the Input Validation as an example, the JavaScript code segment below

shows part of what can be taught to students when teaching Input Validation [26].

<form action="/action_page.php" method="post">
 <input type="text" name="fname" required>
 <input type="submit" value="Submit">
</form>

Fig. 3 depicts the Buy-In Phase and how Direct Control in university faculties can be

used to encourage the use of a secure coding principles checklist and the development

of learning outcomes for each secure coding principle identified. The secure coding

principles used in this phase would be sourced from the Identification Phase as agreed

by the various faculty stakeholders. It would then be necessary to determine appropriate

learning outcomes (LOs) for each level at which each secure coding principle will be

taught as explained in the Implementation Phase.

Prep
rin

t

10

Fig. 3. The Buy-In Phase.

5.3 The Implementation Phase

The revised version of Bloom’s Taxonomy [27] defines this taxonomy as a multi-level

model arranged according to six cognitive levels of complexity of classifying thinking.

For the sake of simplicity, this paper uses the bottom three levels of Bloom’s Taxonomy

to illustrate how secure coding principles can be aligned to each of the three years of

study in terms of the cognitive levels of the content to be assimilated. [28] state that

“When each topic is presented with a Bloom-level of mastery, the instructor is better

informed as to what level of mastery is expected; thus he will be able to determine the

required time and necessary instruction to help the student achieve the proper

knowledge level for each topic”. This suggests that Bloom’s Taxonomy can be used to

determine learning outcomes for undergraduate programming modules within each

year of study as shown in Fig. 4.

The three bottom levels are defined as follows [27]:

 Remembering: Refers to retrieving, recognising, and recalling relevant

knowledge from long term memory.

 Understanding: Refers to constructing meaning from oral, written and

graphic messages through interpreting, exemplifying, classifying, summaris-

ing, inferring, comparing, and explaining.

 Applying: Refers to carrying out or using a procedure through executing or

implementing.

The bottom three levels of Bloom’s taxonomy can assist lecturers with devising learn-

ing outcomes that can be relatively understandable for undergraduate programming stu-

dents to grasp. The complexity of learning secure coding principles might become too

difficult for students within the scope of a three year undergraduate degree as the cog-

nitive levels of Bloom’s Taxonomy reach the three highest levels.

Prep
rin

t

11

Fig. 4. Bloom’s Taxonomy [27].

These levels could be addressed in fourth year and postgraduate studies. Table 3

highlights the relationship between the bottom three levels of Bloom’s taxonomy and

the possible learning outcomes that can be implemented in each undergraduate year of

study.

Table 3. Input Validation Learning Outcomes Using Bloom’s Taxonomy.

Bloom’s

Taxonomy Level

Secure Coding Principle – Input Validation

Learning Outcomes

1st year –

Remembering

LO1. State why input validation is important.

LO2. Define and provide examples of input valida-

tion.

2nd year –

Understanding

LO1. Determine the types of input validation output

in various code segments

LO2. Explain how input is validated in various C#

code segments.

3rd year –

Applying

LO1. Write C# code segments to validate input.

LO2. Modify C# code to suit Input Validation secure

coding principles.

Table 3 provides an example (Input Validation) to illustrate how the learning outcomes

for each identified secure coding principle could be determined by using appropriate

levels of Bloom’s Taxonomy. Since the complexity of secure coding principles varies

at each level, the assessment at each level of teaching must also differ. Although this

paper does not map out all detail relating to all secure coding principles, it uses Bloom’s

Taxonomy to demonstrate the need for teaching and assessing secure coding at different

levels according to the year of study, taking into account the context and prior

knowledge of the students.

Prep
rin

t

12

The integration of secure coding principles through the pillars-first approach allows

students to learn secure coding principles in classroom settings and be assessed through

periodic assignments and tests. However, the practicality of secure coding requires that

the assessment of a student’s learning progress be also assessed outside the formal

classroom setting. According to [7], the IT curriculum must provide students with a

capstone experience that gives them a chance to apply their skills and knowledge to

solve a challenging problem. The capstone project in undergraduate programming

courses provides an opportunity for students to practically apply secure coding princi-

ples they would have been taught. Fig. 5 depicts the Implementation Phase as it relates

to the actual teaching and assessment of the identified secure coding principles. This

study therefore proposes using Bloom’s Taxonomy and the capstone project for the

integration and assessment of secure coding principles respectively. The capstone pro-

ject developed in the third year of study provides an opportunity for the practical as-

sessment of secure coding principles learnt during the first, second and third years of

study.

Fig. 5. Implementation Phase.

Fig. 6 presents the proposed framework comprising all three phases as discussed in this

section. The proposed framework shows how the three phases are linked to each other

within the context of integrating secure coding principles into undergraduate program-

ming modules. From this figure it is clear that the secure coding principles identified in

the Identification Phase are approved and agreed upon by various computing faculty

memebers at the Buy-In Phase. The lecturers of the various programming modules are

responsible for determining the learning outcomes related to each secure coding prin-

ciple according to the level of study at which they teach. These learning outcomes are

then used as a basis for teaching and assessment during the Implementation Phase, with

the capstone project at third year providing the final assessment of secure coding.

Prep
rin

t

13

Fig. 6. Proposed Framework for Integrating Secure Coding Principles into Undergraduate Pro-

gramming Modules.

Prep
rin

t

14

6 Discussion and Conclusion

There is extensive evidence from literature that indicates that secure coding in under-

graduate programming modules is still not extensively taught. This literature empha-

sises the need for computing faculties in universities to consider integrating secure cod-

ing into their undergraduate programming modules to ensure that, upon graduation,

these students can meet the software security needs of industry. The various ACM

Computing Curricula reports [7, 8, 9, 24] affirm this by further emphasing the need for

secure software development.

The problem addressed by this paper is the general lack of formal inclusion of secure

coding into undergraduate programming modules. The proposed solution to this prob-

lem is the development of a framework to assist computing faculty members in this

regard. The proposed framework incorporates a three-phased approach including: an

Identification Phase, a Buy-In Phase and an Implementation Phase.

The Identification Phase of the framework suggests that the ACM Computing Cur-

ricula reports can be used to justify the need for teaching secure coding principles in

undergraduate programming courses since they consider the changing needs of indus-

try. This phase specifically assists with the identification of current standards and best

practices related to secure coding by referring to the work of organisations such as

OWASP.

The Buy-In Phase depicts how multiple computing faculty stakeholders must be con-

sidered to ensure buy-in at strategic, tactical and operational levels within the faculty.

It includes the use of checklists to ensure that the identified secure coding principles

are addressed in multiple programming modules at various levels of study.

The Implementation Phase ensures the pervasive integration of secure coding prin-

ciples into undergraduate programming modules. The use of Bloom’s Taxonomy in this

phase ensures that learning outcomes are appropriate for the relevant year of study. In

addition, it is suggested that the capstone project be used to ensure that undergraduate

programming students learn to practically apply secure coding principles as well as

being assessed on them.

The purpose of the framework is to guide the integration of secure coding principles

into undergraduate programming modules by illustrating the key components and role

players to be considered. The current limitation of this research is that it has not yet

been validated through the actual implementation of the framework. Further research

will consider implementing this framework at various universities within South Africa

to encourage the effective integration of secure coding principles into undergraduate

programming modules.

Prep
rin

t

15

References

1. Aziz, N., Shamsuddin, S., Hassan, N.: Inculcating Secure Coding for

Beginners. In: International Conference on Informatics and Computing

(ICIC). Mataram, Indonesia (2016).

2. Ingham, K.: Implementing A Successful Secure Coding Continuing Education

Curriculum For Industry: Challenges and Successful Strategies. In:

Proceedings of the 19th Conference on Software Engineering Education and

Training Workshops. Washington D,C (2006).

3. Dark, M., Ngambeki, I., Bishop, M., Belcher, S.: Teach the Hands, Train the

Mind. A Secure Programming Clinic. In: Proceedings of the 19th Colloquium

for Information System Security Education. Las Vegas, NV (2015).

4. Taylor, B., Bishop, M., Hawthorne, E., Nance, K.: Teaching secure coding:

the myths and the realities. In: Proceeding of the 44th ACM technical

symposium on Computer science education. (2013).

5. ACM, About the ACM Organization, https://www.acm.org/about-acm/about-

the-acm-organization, last accessed 2019/03/12.

6. ACM, Key ACM Education Activities,

https://www.acm.org/education/about-education. last accessed 2019/03/12.

7. IT2017 Task Group.: Information Technology Curricula 2017. ACM (2017).

8. The Joint Task Force on Computing Curricula.: Computer Science Curricula

2013. ACM (2013).

9. Burley, D., Bishop, M., Buck, S., Ekstrom, J., Futcher, L., Gibson, D.: Joint

Task Force on Cybersecurity Education 2017. ACM, IEEE (2017).

10. Dark, M., Stuart, L., Ngambeki, I., Bishop, M.: Effect of the secure

programming clinic on learners' secure programming practices. UC Davis,

California (2016).

11. Agama, E., Hongmei, C.: A framework for teaching secure coding practices to

STEM students with mobile devices. In: Proceedings of the 2014 ACM

Southeast Regional Conference, Kennesaw, Georgia (2014).

12. OWASP.: OWASP Secure Coding Practices Quick Reference Guide. (2010).

13. Techopedia, Data Validation,

https://www.techopedia.com/definition/10283/data-validation, last accessed

2019/03/05

14. Choudhury, A., Kumar, P., Sain, M.: A Strong User Authentication

Framework for Cloud Computing. In: Asia -Pacific Services Computing

Conference, Jeju Island, South Korea (2011).

15. Visaggio, C., Blasio, L.: Session Management Vulnerabilities in Today’s Web.

IEEE Security and Privacy 8, 48-56 (2010).

Prep
rin

t

16

16. Techopedia, Access Control,

https://www.techopedia.com/definition/5831/access-control, last accessed

2019/03/05.

17. Duong, T., Rizzo, J.: Cryptography in the Web: The Case of Cryptographic

Design Flaws in ASP.NET. In: IEEE Symposium on Security and Privacy,

Berkeley, CA, USA (2011).

18. Techopedia, Error Handling,

https://www.techopedia.com/definition/16626/error-handling, last accessed

2019/03/05.

19. Sadeghi, A., Wachsmann, C.: Security and privacy challenges in industrial

Internet of Things. In: 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), San Francisco, CA, USA (2015).

20. Kindy, D., Pathan, A.: A Survey on SQL Injection: vulnerabilities, attacks, and

prevention techniques. In: 15th International Symposium on Consumer

Electronics, Singapore, Singapore (2011).

21. Techopedia, File, https://www.techopedia.com/definition/7199/file, last

accessed 2019/03/05.

22. Aratyn, T., Kzerooni, S.: Secure Web Application Framework Manifesto.

Security Compass (2010).

23. Whitney, M., Richter, L., Chu, B., Jun Z.: Embedding secure coding

instruction into the IDE: A field study in advanced CS Course. In: Proceedings

of the 46th ACM Technical Symposium on Computer Science Education,

Kansas City, Missouri, USA (2015).

24. Joint Task Force on Computing Curricula.: Curriculum Guidelines for

Undergraduate Degree Programs in Information Technology. ACM, IEEE,

(2008).

25. Gomana L.: Towards a Framework for the Integration of Information Security

into Undergraduate Computing Curricula. Nelson Mandela University, Port

Elizabeth (2017).

26. W3schools, JavaScript Form Validation,

https://www.w3schools.com/js/js_validation.asp, last accessed 2019/03/11.

27. Forehand M.: Bloom's Taxonomy - From emerging perspectives on learning,

teaching and technology. Georgia (2011).

28. Starr, C. W., Manaris, B., Stalvey R.: Bloom’s Taxonomy Revisited:

Specifying Assessable Learning Objectives in Computer Science. In:

Proceedings of the 39th SIGCSE Technical Symposium on Computer Science

Education, SIGCSE, Portland (2008).

